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Antipodally symmetric distributions for orientation statistics

by

Michael J. Prentice
Department of Statistics
Edinburgh University
Scotland, U.K.

SUMMARY

The conventional antipodaliy symmetric Bingham matrix distribution
on the Stiefel manifold is generalised. Large sample maximum likelihood

estimation and uniformity tests are discussed, and a parametric model

for axial orientations (X-shapes) is suggested. A generalisation of the

Khatri-Mardia matrix distribution is developed to provide a model suitable
for hybrids (T-shapes). Beran’s results on exponential models for direc-
tional data are extended to orientation statistics to provide regression

estimators and goodness-of~-fit tests as alternatives to maximum likeli-~

hood estimation and likelihood ratio tests.

Keywords: Orientation statistics, Bingham matrix distribution, antipodal
' symmetry, exponential family.
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1. Introduction

Following Downs (1972), we define an orientation statistic as a
rigid m-frame in & (m<p) 4i.e. an mXp matrix X s.t. XX'=C,
where C 1is an m*m symmetric positive definite matrix specifying the
angles between the rows of X . Without loss of generality we suppose
c-:l:‘ since all methodology for c-I. can be extended trivially for
general C . We define an L-shape to be a rigid m-frame of signed
directions (a conventional orientation statistic), an X-shape to be a
rigid m-frame of axes, and a T-shape to be a hybrid, an mframe of n,
axes and m, =m-m, signed directions in . . All methodology so far
published is suitable for L-shapes. We assume that p>3 since when
p=2 every type of orientation statistic reduces to either a direction
or an axis on the circle.

The von Mises-Fisher matrix distribution provides a suitable unimodal
paf. for orientation statistics. Maximum likelihcod estimates and likeliihood
ratio tests have been developed by Downs (1972), Khatri and Marxdia (1977)
and Jupp and Mardia (1979). The conventional fully parameterised Bingham
matrix distribution (Khatri and Mardis, 1977, (7.2) with §=0) is the
obvious analogue on the Stiefel manifold of Bingham's antipodally symmetric
distribution on the sphers (Bingham, 1974). Maximum likelihood estimation
and tests of randomness against a special case of this distribution have
been treated by Jupp and Mardia (1979) and Mardia and Khatri (1977). In
Section 2 we stats the corresponding IMIE results for the mxymua
™ -modal Binghem metrix distribution. mmmmu;“ |
gensralisation of tho Bingham matrix distribution in Section 3, and ebtu,n
a new 'Binghan’' statistic as a large sample test of mtontw m!.nlt ‘
general antipodally symetric altermatives, a large sample approximation
to the likelihood ratio statistic. In Section 4 a special case of tiis .




-

e ¥ - o

‘i nttmenll a

distribution is suggested as a suitable model for X-shapes, and an nd.u
Binghan statistic is obtained for a test of uniformity. The generalised
Khatri-llardia satrix distribution is usec in Section 5 to provide a
suitable parametric model for T-shapes, and a hybrid l'uyluqh-man
statistic is obtained as a large sample test of uniformity. Beran's
Tesults on rotationally invariant exponential wmodsls for directional
data are extsnded to the Stiefel manifold in Section 6, to provide
regression estimators and goodness of £it tests within the gensralised

Xhatri-Hardia family of distridbutiocns, as alternatives to the

coxputationally inconvenient maximum likelihood estimators and likelihood

ratio tasts.

2. The Binghss metrix distribution
I£ X 45 am P matrix random variable (m<p) with paf

@0 "™ x| |v|"™ etr(-ax(x-p)Vix-p) ax (2.1)
vhere K i3 wm symmetric positive definits, and V is pXp symmetric
positive dafinits, then if n-Q‘ s 8N BYp matrix of sercs, the pdaf
of X, conditional on XX’ -I- is (Khatri and Mardia, 1977, (7.2))

etr(-ym™l 1 dgxvx') [4ax] (2.2)

vhere [dX] denoteas the uniforam distribution on the Stiefel manifold
O(mip) o and Y=y(ROV) is a normalising constant which depends only
upon the diagonal matrices D‘. n' of eigenvalues of X and V.
Series expansions for o" ¢ 8 hypergecmstric function of two matrix
argusents, have been given by Srivastava and Carter (1980). Por reascns
which will become mt. ve denote the distribution (2.2) »(X.m,p,K0V).
Its parameter space has Adimension (';1) 419;") =2 when l<a<p-l , since
B(X,m,p, (9K) ® (o' V48I)) =B(X,m,p,KOV) for all real scalars & #O,8
(cf. Bingham, 1974, Lesmm 2.1). Similarly, vhen as=p

3(X,p.p» (ﬂ#lltv) [ (l“1 Vﬂ:t’)) =B(X,p:pr KOV) , where without loss of
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generality we may assume txace(K-V) =0 , so that the pararmeter space has
dimension 2(°;') -3 . Vhere convenient to identify parameters uniquely
ve shall assume that 'Pe.o (ana kpp-o. if n=p), or, if dealing
in spectral decompositions, that the entries in 'DK and Dv are
in decreasing order with (%)W-o (and (D‘)ll =0 if a=p). Ye
assuns that the elements of D, and Dy, are distinct so that K has a
unigue matrix QeO(m',m) of eigenvectors and V has a corresponding
matrix MeO(p-1l, p) . PFrom Thecbald (1975, Theorem 1), the distridbution
(2.2) has 2‘. modes at the points x-Q'Hl + Where "1 is the m'xp
matrix of the first m'snin(m,p~l) ocolums of M. The multiplicity
2* artses from the possible sign changes of the colums of Q@ and M, -
I am grateful to Dr Thecbald for first drawing my attention to this.

A random sample xl, Xas ecee X, on O(m,p) from the distribution
(2.2) has log likelihcod

-ny - im trace(XOV)Y (2.3)

; X, 00X = (yjk'“) v 123,q5n, 1<k,2<p . The

imy
dietinct elemsnts of Y , excluding those for which (k,2) = (p,p)

where Yea t

(and alsc those for which (3.9) = (p,p) when =a=p) are sufficient but
not minimally sufficient unless mel (the case of directicnal data),
because vou,p) = (1) - 3H 2 (Mh e P3N - 2, vith equality enly
wen mel, and v(p.p)-(P’;l)-N";l) +1>23h <3 . e folioving
is a consequence of Bexrk (1972), and elementary calculus.

Theorem 2.1
(a) Por sufficiently large n , there exist unique MLEs iﬁ subject to

the condition ;"-o (and ipp-o and trace(X~V) =0 whem mep) of the
paramsters in 3(X,n,p,X0V). The MiEs are the solutions of

=’

T

.
Mo




(%) RV) = (20% - ”1&,

=d (}% = <k W, (R)

)o:.v) - (X,¥)
2 8 1% .,

where HI(V) =n 1:1 X‘V!". and lzm) = 151 Xi ni

() (Spectral version) 1If K-Q'D‘Q and V-H'Dvﬂ are unique

spectral decompositions of K and V , where Q ¢O(n',m), Nc O(p=1,p)

and D‘. Dv are respectively a'xm' and (p-1)x (p~1) diagonal

matrices (and trace (D‘-Dv) =0 4f mep) , then for sufficiently

large n with probability 1 there exist unique MiZs @, A, By, B, of

Q, N, Dx.bv given by the unigque spectral decompositions

lllm -9'0'19. wzd) -ll'B“zﬁ and the equations

(%‘.) Bgeny = by *H

We offer no algorithm for the ewaluation of £ and ¢ . Given suitadble
initial spproximations Ky, ¥, it should be possible to construct an
iterative procedure, given tractable series expansions for Y and its
firet derivatives (see Binghan, 1976), but considerable computaticnal

effort is necessary.
Npp and Maxdia (1979, Theorems 1(b) and 4) have cbtained the

analogue of Theorem 2.1 for the special case B(X.m,p,I_ @V) which has
parametar space of dimension AL(p~1) (p+2) provided m<p . We note
that ux.p,p.:’ow is the unifora distribution so their results are

invalid for sguare orientations. The 109 likelihood of a sample from
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.(X.Im.!. oV), m<p,

is -n v(I-.V) - in trace VY* (2.4)
n

where Y*®* = n 1 z Xixt is pxp symmetric, positive definite with
is]

probability 1. The distinct elements of Y* , excluding y;p say, are

ainimally sufficient for V , subject to 'pp

sample test of uniformity against alternatives (2.4), asymptotically

=0 say. A simple large

equivalent to the likelihood ratio statistic, say be obtained by
generalising Bingham's Theorem 5.2 (1974, p.1208). We aobtain

2.2
On the mull hypothesis of uniformity the statistic
s,- (tzace (Y*2) - a2/p) np(p~1) (p+2)/2m(p~m) is asymptotically aistributed
as x2 on v(1,p) »h(p-1) (p+2) degrees of freedom.

Proof (A simpler version of Theorem 3.2 below).

If y* s the (;))-vector of the Aistinct elements of Y* , then
I*, the asymptotic variance matrix (Mardia and Khatri, 1977 p.469) of
a’y* has rank v(1,p) and a generaliszed inverse (p(p-l) (p+2)/2m(p-m)]

blockdieg (I, 2Z . ) . Since T* has mill expectation wlz , the

P
c‘,’)

result follows immediately (see also Xhatri and Mardia, 1977, p.471, for
an slternative derivation).

Remarks 1. 8,  is undefined when a=p
2. l(x.n,p.xtx’). the other cbvious special case of (2.2), is

the uniform distribution for all a, 1Sa<sp .

A _gensralisation
Consider the fully paramsterised multivariacte normal sodel
(20) "% [2]"® qer(-h A(x-u) ® (W) )X
and the conditional distribution
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etr(oy (ap) 2 1o - i AXex)(ax) (3.2)

cbtained when XXx* 'In and g-g‘ . Hers A {s mprap symmetric

positive definite with distinct eigenvalues 8 >... >;‘ s and ys=y(A)

is a normalising constant. The distribution (3.2), denoted B(X,m,D,A)

is antipodally symmetric and has parametar space of di.uuicq v(m,p) ,

since B(X,m,p,A) =B(X,n,p,A ’“l."p, for all real mm symmetric matrices

A o and B(X,p,p,A) =B(X,p,p,A #Aloxpo-tptlz) for all real pxp symmetric
matrices “1' A, . where without loss of gensrality we may assume trace (Al-Az) =0 ,
Where convenient to identify paramsters uniquely we shall assums that

A=(a 1<3, q<m, 1<k,2 <p, satisfies the conditions

3k, tq’

.39091.0 for all 3,9, and, if ms=p, 'pk,lp.o for all x,% . (3.3)

A random sample from the distribution (3.2) has log likelihood
-“ny(A) -5n trace AY (3.4)

with Y= as in (2.3). The distinct elements of Y , excluding

(yjkon)
those corresponding to (3.3), are minimally sufficient for A . From

Bexk (1972), and Aifferentiation we obtain.

!M- 3.1
Por sufficiently large n , with probability 1 there exists a unique

MEA of A subject to (3.3), which {s the solution of

("“)‘...-., iy

As vith theorem 2.1, there are considerable computational difficulties
associated vith the search for i . 1In particular, no explicit form of
Y(A) is curreatly aveilable.

A Bingham statistic for testing uniformity ageinst all antipodally
symmetric alternatives of the form B(X,a,p)A) may be obtained as follows.
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Theoren 3.2
= - -1 t J ‘2’ - - .
et 2,=Y-p "I and 2= 4o "" 0,00 Yax,y) - 00 e

null hypothesis of uniformity the statistic

Bmp-n(p-l)[k(p+2) trace (ZiZl) - trace (ZEZZ)] is asymptotically

distributed as x2 on v(m,p) degrees of freedom.

Proof

On the null hypothesis Y has expectation p-" I'p . Consider first

the case ®m<p. The ('p; 1) distinct elements of Y may be written as a
vector

oAU REIRTTTRS A RS PL ATy <x._1'n>)'
vhere each <Yy4> 1<j<m, is a (p;'l)-v.cto:

-1 . '
¥31,15° Y92,29% **°* T33,93 7P ¢ *t0 Yyppye g1 290 ¥y1,39¢ =oor Typy oy
and each <y, >, 1<j<t<m, isa p?-vector
32,100 +** Yap,pas Y31,20° Ty2,00% ***¢ Yypp,pr’ Ysp,p-ae? - 0019
Anderson and Stephens (1972, p.616) it follows that n.’x has covariance
matrix T =[(p-1) (p+2) * blockaiag( (2C,, ®blockdtag (€ 2T , ),

va]
I_ @ blockdiag(C etz  en
"
Q » &
2 -1 2 p"l' -1
where c‘-x P 1,1, is an w*m matrix of ones, and D= -1, pul°
-1 -
Since c.’-c.'-_p and c”-zp is a generalised inverse of c” o 1t
follows that
T = blockdiag( (h (p-1) (p+2)C, o Oblockdlag(I .21 . )),

4] '
I_ © blockaiag((p~1) (p+2) I_,I _ @D,))
R P o

(p’-u.(p-n]

is a generalised inverse of I , vhere °1'[(p-1).(p3-1’ « As I has rank

v(n,p) and the quadratic form n y'l y reduces to 3o %5 sbow, it

follovs that B is asysptotically distributed as X on vim,p) Gegrees
of freedom.
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The only change nacessary wvhen ms=p is that cn 2-p should be
L4
replaced by Ipt-c;p). We obtain B as above, vhere now I has rank

PP
vip.p).

Remarks 1. then p>4, ’pp is precisely the 'Bingham' statistic
obtained by Prentice (1981, (3.4)) from consideration of the (Q,2)-th
and (Q.1,1)-th characters of the irreducible continuous representations of

the rotation group o’(p).

2, bthen m=1l, ’1p is the conventional Binghan statistic for

directional data, since then z2 = QPP and Z1 is symmetric.

Axial orientation statistics

The distribution (3.2) (or (2.2)) may be specialised to give a parametric
model suitable for X-shapes. We require a probability density on O(a,p)
invariant under sign changes of any row of the random weriable X . This
is achisved if A satisfies the conditions 'jk‘),q'o 12 Jdqg. W

vrite 3'°%) (x,m,0,2) for the density
etr(-YpP xp L] 351 ljg’:_x;) (4.1)

where Y=Y(E) is a normalising constant, E is an mxpxp array with

jth layer lj e 1<j<m, ®xs "%3x,24° 1<k,2<p, and x4 is the j-th row of the
random varisble x . Since 3'® (x,n,p,8) =3 (x,0,p,248%) for all real
WpXp arrays with elements o;u-o’ ¢ Gspendant on layer only, it follows

that the distribution (4.1) has parameter space of dimsnsion

n(a,p) =»n (’;1) ~ash n(p~1) (p+2), vhen m<p . If mep, o;u may be of

the more general m ‘3+’u vhere !'-(Gu) is p*p symmetric, and

. without loss of generality, £ =0 ., BHence for square axial orientations

- 4
the parasster space of the distribution (4.1) has dimension

n@.p) 'P(P;l’ - (’;1) “p+lay(p=-1)2(p+2) @n(p-1,p) . Where convenient
o identify parameters uniquely, we shall assums that




"

o’pp-o for all 3§, 1£4%<m, and {f me=p, !:p-o also. 4.2)

A random sample from the distribution (4.1) has log likelihood

o
-nY(E) ~4n trace I 33"3 4.3)
I=1

a
vhere Y, mn t ¢ x¥ ;5“')' . g_:“') representing the jth row of X, .
3%n EE N ex !

The distinct slements of !1, ceayg !n « excluding those corresponding to

(4.2), are minimally sufficient for E . As in Section 3 we obtain

Theorem 4.1
For sufficiently large n , with probability 1 there exists a unique

MLE £ of E , subject to (4.2), which is the solution of

ﬁ) . By, eees X, .
(33 (E-ﬁ) 1’ ' "m

An axial Bingham statistic, suitable for testing uniformity against
alternatives (4.1) may be cbtained from a simplified versiocn of Theorem
3.2. From consideration of the asymptotic aull distribution of the
tirst m(";!) elements of 'y we obtatn

Theozrem 4.2
On the null hypothesis of uniformity the statistic

a
n.‘;" = im(p-1) (p+2) (trace( I !”) -u/p) 4s asymptotically distributed
i=1

as X2 on n(e,p) degrees of freedom.

a
Remark 8. (Theorem 2.2) =inp(p-1) (p+2) (trace(( I !,)2)-l’/p)/l(p-l) '
=1

provided m<p .
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A parametric model suitable for T-shapes may be ocbtained from the
generalised Xhatri-Mardia distribution

etr(-Y(m) L I - WAX@X' +AuOX') , (5.1)

IEP
from (3,1), conditional on XX' =1 , when g#gm . Ve require that the
pdf should be invariant under sign changes of any of the first m,

rows (the axes) of X . This can be achieved by requiring that

0
u-(:'p). vhere u, hannzlpnt.riz of means, o<n2-n-n1<n.
2

and that A satisfies the condition a =0 if j¢¥q and

ik, 2q
nl.n(j QQ) inl + We write B(hy) (X,ll.nz.p.uzpl,hz) for the d‘miq
=
exp(-Y-%4 trace( I B x x1) +trace(A u, 0X},, -4 A X, 0X!,.)) (5.2)
qop 3953 Aup 8X12) =1 A% (2) ®%(2)

vhere 7-7(8,52) is a normalising constant, E is as in Section 4, but
with only B, layers, Az is the -2;»-29 submatrix of A oorresponding

to X,.,» the last m, rows of the random variable X . 8Since

(2)
50“') (xoﬂloﬂszvuzazolz’ 'Bm’ (x.nlmzopmz:l +E*, Azﬂi .IP)

for all real E* as in Section 4 (but with only ®m, layers), and all

1
real symmetric '2“2 matrices A'z' ¢ it follows that when "‘1"‘2 <p,
the distribution (5.2) has parameter space of dimension

B+l +1
¢ (=, /m,,p) --1(’;1) +(% )-m - (nzz )+ 8.p = n(m,p) ¢ vim,,p) +ap .

Wher m=p , the more general result

39 (2, im0,y Bk = D™ (xm im pg BB, ¢ (A3 OT) s, om)

obtains, vhere F and E* are of the more genseral form in Section 4, and
so, the distribution (5.2) has parametsr space of dimension

¢(mi,m,p) = nim),p) +V(my,P) +8p , where m = ain(m, ,p-8,-1).
Vhere convenient to identify parameters, we shall assume that “2
satisfies (3.3), and that

om-o for all 3, 113:-1' and {2 =, ta, =D, l‘t-o

A anhiestenmien




A random sample from the distribution (5.2) has log likelihood

m .

-ny (E,Az) -4n trace( I !:j\' ) +n trace(A -5 AY (5.4)

]
jup 33 #2® (2

vhere 3(2) is the n,xp matrix of means of the last m, rows of the
data mf.r:l.eu‘ xl. cosy xn + and Y(z) is the mop x m,P submatrix of Y
corresponding to the last m, rows. The distinct elements of
xm,!l, vee !.1. Y(z) » excluding those corresponding to (3.3) and
(5.3), are minimally sufficient for ¥y E and A, .
Theorem 5.1
For sufficiently large n , with probability 1 there exists a
ME  § = (1,AyE) Of 0= (u,.A,E), subject to (3.3) and (5.3), which

is the solution of

i—) = f a

(;%) LTRSS

(0=0)
(5?; ) U 0%y Yy -
(6=0)

A large sample test of uniformity of T-shapes against alternatives
(5.2) may be obtained by slight modification of Theorems (3.2) and (4.2).
We obtain a hybrid Rayleigh-Bingham statistic:-

Theores 5.2

On the null hypothuu of uniformity, the statistic

(':) as in Theorem 4.2, and {
1 [

B as in Theorem 3.2, is asymptotically distributed as X2 on
O(Iiolzop) degrees of freedom.

+ pn trace (252) with B




Proof
;(2 has expectation gm P and is asynptotically uncorrelated with
!1, ceer X and !(2) . Using the method of Theorem 3.2 we cbtain a
n mp+L

guadratic form in m,p + ( 2 ) + Y (p;") variables with covariance

matrix of rank Q(Ei.mz.p) » which reduces to 8:’:::;!, as statad.

Exponential models and reqression estimators
It is instructive to consider these matrix Bingham and Khatri-ilardia

distributions within the contaxt of the rotationally invariant exponential
family of distributions for orientation statistics, cbtained by generalising
Beran's (1979) exponential family for directional data. Provided good
multivariate density estimates are available, the cbvious analogues of
Beran's regression u.timtert ((1.10) ibid.) and goodness of fit tests
(Section 5, ibid.) should be considerahly more convenient computationally
than exact MLEs and likelihood ratio tests.

Consider first the case m=p , and the general exponential model

exp(h(X) ~y(h)), heeo t-:'s » whare ns is associated with the
S

g-th character of the irreducible continuous representations

of 0+(p) , as in Prentice (1981). The von Mises-Fisher

matrix distribution spans ”Q.]. ¢ of dimension pz + and has basis

8, -{xu. 124,3<p} . The generalised Bingham matrix distribution (3.2)
spans Hznmg'z 0!19'1'1 of dimension v(p,p) when p2>4 , and panc
2«:20l!1 when p=3 . A basis is provided by

8, = h‘iﬁtz' 124 <k<p, 1<3 <L <p, excluding cases corresponding to (3.3)} .

¥hen » €p, corresponding results are ohtained by excluding the last (p-r)
rows of X. te obtain "2 of dimension V(m,p) with basis

{x 4% 4 1S15kgm, 123st<p, excluding cases (3.3)} .

s e




For X-shapes, and the distribution (4.2) we proceed similarly. We
cbtain {x, 9%k’ l<ic<m’, 1<3<k <p, excluding cases corresponding to
(4.2)}, of dimension n(m’,p). PFor hybrids, and the distribution (5.2),

a basis is {x“, m<i<m, L<i<pl @ {xuxu‘. lcicmi, 1c3k<p
excluding cases corresponding to (5.3)} @ (x“xn. ® <ik<m, L3t <p,
excluding cases corresponding to (3.3)}, of dimension ¢ (m; ,m,,P) .

8ince Beran's results (1979) apply to the canohical exponential
fanily of any compact space, his formulae (1.10) for estimators, (5.5) for
approximata tests, and their extensions to interval estimation, may be used
in large samples on orientation statistics of all types, provided only

that suitable robust multivariate density estimates are available.
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